
USE OF A COMMERCIAL VISUAL PROGRAMMING LANGUAGE
TO SIMULATE, DECOMMUTATE, TEST AND DISPLAY A

TELEMETRY STREAM

“t,

.

George Wells and Ed Baroth, Ph.11.
Measurement Technology Center,

Jet Propulsion Laboratory,
California Institute of Technology

ABSTRACT

The advantages of using visual prograrnining to create, modify, test and display a telemetry stream are
presented. ‘I’he failure to fully deploy the high-gain antenna of the Galileo spacecraft has resulted in a
software redesign of the computer systems onboard the spacecraft to support the low-gain antenna
mission. Visual programming software is being used to test new algorithms as part of the ground support
for the spacecraft Test Bed. It is very important that any new software algorithms be thoroughly tested
on the ground before any modifications are made to the spacecraft.

The advantage of using a visual programming language (LabVIEW, National Instruments) is that it
provides easy visibility into the decommutation process that is being modified by the Galilec~
programming support team. In addition, utilities were written using visual programming to allow real-
time data display and error detection. A data acquisition board is used to clock in the actual synchronous
telemetry signal from the Test Bed at rates below 10 kHz. The time to write and modify the code using
visual programming is significantly less (by a factor of 4 to 10) than using text-based code. The gains in
productivity are attributed to the communication among the customer, developer, and computer that arc
facilitated by the visual syntax of the language,

KEY WORIX3

Visual programming language, telemetry simulation and decommutation, LabVIFiW, software
productivity comparisons.

INIXODUCTION

The Measurement Technology Center (MTC) evaluates commercial data acquisition, analysis, display
and control hardware and software products that are then made available to experimenters at the Jet
Propulsion Laboratory. In addition, the MI.C specifically configures and delivers turil-key measurement
systems that include software., user interface, sensors (e.g., thermocouples, pressure transducers) and
signal conditioning, plus data acquisition, analysis, display, simulation and control capabilities.”?

Visual programming tools are frequently used to simplify development (compared to text-based
programming) of such systems. Employment of visual programming tools that control off-the-shelf
interface cards has been the most important factor in reducing time and cost of configuring these
systems. The MTC consistently achieves a reduction in software/systen~ development time by at least a
factor of four, and up to an order of magnitude, compared to text-basecl software tools.3d.5’6 Others in
inclustry are reporting similar increases in productivity and reduction in software/systen] development
time and cost.78’9

BACKGROUND

The Galileo spacecraft is scheduled for an encounter with Jupiter in December of 1995. About six
months before encounter it will release a probe that will impact Jupiter. The spacecraft will then change
its trajectory to go into a highly elliptical orbit with a period of three months. A timer in the probe will
activate its radio transmitter just before arriving at Jupiter. The original plan called for a real-time relay

, of the probe radio signal by the Galileo spacecraft to earth, but this is no longer possible because its
high-rate dish antenna has failed to open fully. Instead, the Galileo computer will bc re-programmed to
strip o“ut the overhead and house-keeping bits in the data stream coming from the probe. The important
data sent by the probe transmitter will be stored in the limited on-board memory for later down-linking
to earth. l’his down-linking will occur sometime during the first orbit using the low-gain omni-
directional antenna, at a much lower bit rate than if the high gain antenna was fully functional.

Currently, the MTC is supporting a software redesign of the computer system aboard the Galileo
spacecraft. This paper documents the programming effort to verify the correct re-programming of the
Galileo computer subsystenls by monitoring the telemetry of the ground Test Bed setup of the computer
subsystems and the emulation hardware for the probe radio receivers to assure that every byte is
correctly downloaded. The MTC is using LabVH3W software among other tools to help test the flight
software redesign. For details on the LabVIEW environment, other sources exist. ‘o.’”2

The task of the computer redesign is complicated by the fact that there are actually two redundant probe
radio receivers and several multiple computer subsystems with their own memory partitions on the
orbiter. A Configuration Table was set up to specify which receiver(s) would be the source of the data
and which sections of which subsystems would be the destinations of the stripped data.

Using visual programming, software was developed to perform a stripping algorithm on the emulated
probe data to be used in the test, and, using the Configuration Table, create a Predict Table of the data to
be downloaded (Figure 1). A probe analyzer program was developed to monitor the telemetry from the
Test Bed, decommutate the memory read-out data, compare it to the Predict Table and display the
progress of the test. After the test was over, utilities developed in LabVIEW were used to disposition
any discrepancies, including incorrect or missing bytes, and relate them to the original expanded data to
determine the nature of the mob]em. A neccssarv additional component was a Test Bed simulator so all
of the other programs could-be developed and debugged before connection to the Test 13ed.

_—. —..

3Raw Prob
Data

Complete
Data file

r
Stripper

- Program

Removes

F~~--X-_~ Configuration

I Mu[ti~le I I
overhead and
housekeeping~–-

~ Channels ~

‘--’LH’!EEZ:..
,-1–

---i

Log
Errors

..—. —

Figure 1. Schematic of ground support sequence of data flow from probe.

LabVIEW running on a Macintosh Quadra was used as the programming environment for this task
because it had proved to be superior in similar tasks.13 The advantages LabVH3Wprovicies include the
ease with which the customer can communicate requirements to the programmers and understand the
operation of the program so that changes can be suggested. The gains in productivity are attributed to the
communication among the customer, developer, and computer that are facilitated by the visual syntax of
the language. LabVH3W proved exceptionally capable in providing an integrated environment to manage
all aspects of the telemetry test, from pre-test data set-up to post-test discrepancy resolution, as well as
running the test in several simulator modes or with the Test Bed..

PREDICT TABLE GI1NERATION

The creation of the Predict Table was performed in two steps. First, files containing the simulated raw
data from the two radio receivers had to be stripped using the same algorithm to be programmed into the
Galileo computers. The fact that the processors are different is considered to be a check on the
programmers’ understandings of the algorithm. Second, the Configuration Table was used to determine
where the stripped data would be stored in the on-board memory of the Test Bed and in the Predict
Table of the Analyzer. The Stripper program, Configuration Table, and Predict Table are LabVIEW
emulations of the identical operations performed in the Test Bed, except instead of storing the bytes in
various subsystem memories, as they am in the Test Bed, they are saved to the Predict Table disk file.

TELEMETRY SIMULATOR PROGRAM

The telemetry used to download the Galileo probe data makes use of the memory readout mode that is
an available option in every frame. The first one hundred bytes of each frame type have identical
meanings; the remaining bytes differ depending on frame type, but are of no concern for this test. This is
shown as Figure 2. Included in the first one hundred bytes are four bytes for a psuedo-random sync code
(Sync), two bytes comprising frame ID (FID) which included a bit to signify when the frame is in the
memory read-out mode, six bytes of spacecraft clock (SCI.K), five house-keeping bytes, one byte to
signify which computer subsystem is being read out (S/S), two bytes pointing to the first address being
read out (ADD), and eighty bytes of memory read-out.

~7Memory Bytes

I

Bytes: 4 2 6 5 1 2 80

Figure 2. Memory map of the first 100 bytes of each frame type.

Once the operator has started the memory read-out mode, the probe simulator program will randoml:y
select one of the computer subsystems as defined by the Configuration Table and output the next eighty
bytes as defined by the Predict Table, When all the bytes for a subsystem have been read out, the
memory read-out bit is turned off for that frame unless the operator has put the simulator in recirculate
nmclc in which case that subsystem will be downloaded another time.

If the test mode requires that the simulator actually generate the telemetry, the two digital-to-analog
channels of the multifunction input-output (MIO) board are initialized to generate a pair of continuous
signals; one of them is a square wave of the frequency specified by the operator ant{ the other one is the

,. ,,

data. Both have zero to five-volt swings. If the test mode does not require real telemetry. then the data
bit-stream is saved in memory. The simulator is used for debugging or demonstration purposes only.

-.----,--.--*-—----------.--.---.-.---’-DGUMB
..-..-:---=--:--:---, ----.-’—--,---—-,-------,- -N3uMA I Zmzrl

RECORD

Figure 3. Telemetry simulatc)r user interfxe (l,abVIIiW VI Front Piinel)

Figure 3 is the user interface (or VI for Virtual instrument l;ront Panel) for the simulator program. It
displays the names of the subsystcnls along the top md the rates at which frames arc generated. The user
can also generate errors of various types. ‘1’hc subsystem type for each frame is displ;~yed as a mark on a
scrolling strip chart.

Figure 4 shows the progrum (1.abVII:W I)i;[granl) nssociutcd with the si]nulotor (}igure 3). It has an
icon for each of the controls on the Panel and :ivcs a :cncral idea of how (iata flows bctwccn the wmious
icons, structures, and subroutines (sLIbV1’s). An example of a subVI is the Predict T[lblc box near the
middle of the figure. 1[can be expanded to show its own user interftlce an[i pro:ratn. “1’hc large
rectangular frames arc 1.abVII;W structures that help orgonim the diti:riinl und pcrforln looping
functions. I>c[ai]s of 1,abVIF.W progmmmin: can tx found clscwhcrc.

m

0 .Jmm

m
?EM:
1-
Fo ,—.

T3
—

,—

t--

?..~

(..

L+
❑

Tfl

——
L ‘;

.——— ---—

_. ___ . ..—_ -—— .
[~.— —---—!—m——.—. -.—. ..— . . - -. .—I-1---3-s ~M

AA1–n

.—.

~ M+X-

STARTi
h--#J

fram* Dews
——— -. (tioks) [1321 -_ . . . — .

Mrnnwm 1321

Frm O+IWS

W@_ .
T

i

*
:

__— ---

L..

1

__= . . _ . . . —

.— .- r-’. —-- -.-— --, ---~~———

-—-. .—
$66660012345

--q

Figure 4. Telemetry simulator program (LabVIEW VI Diagram).

TELEMETRY ANAI.YZRR PROGRAM

If the test mode requires the analyzer program to read the real telemetry signal, the MIO board is
initialized to take continuous readings on a single analog channel clocked in by the clock signal. If the
test mode does not require real telemetry, then the requested bits come from the memory saved by the
simulator. In either case, the analyzer program will wait until the requested bits are available.

During initial development, the simulator and analyzer communicated directly through a common
memory software routine on the same Mac computer. Later, the simulator generated a real clock and

data stream on one Mac that the analyzer read on another Mac using National Instruments Am boards.
When it came time to connect the analyzer to the lest Bed telemetry stream, it was operating within a
few hours.

I)uring the course of simulated or actual monitoring of the telemetry signal, the rnen?ory read-out
contents are compared with locations in the Predict ~’able as spccifled by the Confi.guratlon Table. As
long as the contents match, only the subsystem name and address are saved, but in the event of an error,
the entire eighty bytes for both the Predict Table and the telemetry stream arc saved. Also, a count of the
number of times each byte in the Predict Table is read is maintained , along with a flag Indicating if any

byte was read in error. A counter displays the remaining number of bytes from the Preclict Table that

hovcnot yet txxn readout. Abit-l]~:\p clispl:l)/s:~ lJixcl !’orc:lchby(c intlrc l)rcdict
‘1’:iblc a[ld [urns black

if it has been read con”cct]y. Thus. it is very c;isy to nlt)nitor [hc pro:rcss of the test.

Figure 5 shows the analyzer in operation and :cncrul]yi rct!ccts the s:lmc subsystcnl patterns as the

simulator cxccp[ciclayed in time. 7’hc “Predict ‘1’ablcs
and “Il(Jwnlt)2~(1cc!” windows will show the

:~~tL]a] hc,x bytes whenever there is a discrepancy. Other Indicators (iisplay vaii OLIS errors 01” Stat LIS.

I;isurc 5. ~’elemctry anilly~cr user in[crfacc (I .abVI1;W VI l;mnt P:incl).

])] SI’OS]’J’10N” ol~ l) ISCRIWANC1l;S

7’o better analyz.c any errors that may occur (iuring a [cst, :Ki(iitional utiiitics were [icvciopc(i to pinpoint

the iocation of tile error in the l’rc(iict “1’:ib]c ;inci Luacc it back to the c~>rrcspon(iin~ error bi{s in the

Ori:. inai raw (iata fiics. ~nc of these u(ilitics ~voui(i ciisi>lay the
raw arr(i the strippc(i (iat;[as (icfinccl by

ti)c I’rcdict l’able anti as dcfinc[i by the Galiico tLslct\Ictry so ti)ilt ti]c systcm :inci nature (~f [iw error could
bc i~icntificci. Without these uti]itics. it ~v(mici twvc bL’L~n vir[l];]liy imix)ssii>ic It) [ictcrnllnc tilC SOLIKC Of

the errors wililin any reasonable [imc. ‘1’~picaiiy,. iltlw’cvL’r.
(csts of this n:l[urc’ i]avc been run in tile past

witilout such utiiitics, simpiy bccausc 01 the [ill fic’ui(y un~i cost Of cicvciopinp
[ik’111 :lllLi iNC:lLISC Of the

optimistic hope (l~at lilcy woul[i never bc nc~’lic~i.

.
,,.

ADDITIONAL TASKS

Since LabVJEW promotes high programmer productivity, the customer had plenty of time to suggest
new features such as the ability to log the raw telemetry stream to a disk file and then simulate the
telemetry stream from disk so that a test could be repeated without incurring the cost of re-running the
actual test using the Test Bed and support personnel. This was a simple modification of the original
implementation using the simulator and analyzer on the same Mac and proved to be valuable because, as
it turned out, during the actual first run of the Test Bed a wrong Configuration Table was used which
generated a large number of errors. When re-run from the logged disk file with the correct Configuration
Table, there were no errors, saving a costly re-run using the Test Bed personnel.

Another suggestion that was implemented was the ability of the analyzer to “read” telemetry from the
TCP/IP port instead of a disk file. This allowed communication between the analyzer and a Test Bed
emulator that was written on a Sun workstation. The Sun provided the Galileo programmers with an
easier and faster platform on which to develop their code. (The Galileo CPI-J’S are ancient 1802 8-bit
processors.)

EXAMPLE OF VISUAL/ TEXT-BASED PROGRAMMING COMPARISON

During the course of program development, it became necessary to generate the source files for the
probe receivers based on data that had previously been downloaded from the Galileo spacecraft
telemetry in a test mode. A “C” programmer who was familiar with the file structure was assigned this
task for approximately two weeks and had not delivered a finished product. As a back-up, the task was
also given to a LabVIEW programmer. The application was developed in LabVIEW by one programmer
in less than 2 weeks. For the one data file which the routine was written to operate on, no errors were
found in the input data.

After spending approximately one month on the task, the C programmer delivered a product that was
advertised as being complete. The C. programmer noted that when the program ran, it found errors in the
input data. Since the customer already had the LabVIEW version (with no errors), the raw data was
compared with the two sets of output files and it was discovered that a bug in the C code caused it to
find bad data where none existed. The C programmer spent a week or so making changes to the code,
but was still not able to process the data correctly. The customer then decided to halt the C programming
effort.

CONCLLJS1ONS

A visual programming language was able to create, modify, test and display a telemetry stream. It
provided easy visibility into the decommutation process modified by the Galileo programming support
team. The time to write and modify the code using visual programming was significantly less (by a
factor of 4 to 10) than using text-based code. This task showed that it is possible to use visual
programming for realistic programming applications. It also confirmed that visual programming can
significantly reduce software development time compared to text-based programming.

Other advantages demonstrated were in the areas of prototyping and verification. Different approaches,
can be demonstrated and evaluated quickly using a visual programming language. Verification can be
demonstrated using the graphical user interface features available in a visual programming language
easier than using conventional text-based code.

As stated, the gains in productivity arc attributed to the communication among the customer, developer,
and computer that are facilitated by the visual syntax of the language. The advantages LabVIEW

+
..<.

provides include the ease with which the customer can communicate requirements to the programmers
and understand the operation of the program so that changes can be suggested. With this
communication, the boundaries between requirements, design, development, and test appear to collapse.

ACKNOWLEDGMENTS
#

The research described in this paper was carried out by the Jet Propulsion Laboratory, California
~~. Institute of Technology, under a contract with the National Aeronautics and Space Administration.

The authors wish to acknowledge the contributions of Amy Walsh and I.ee Johnsen towards the writing
of this paper.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

13.

Baroth, E. C., Clark, D. J. and Losey, R. W., “Acquisition, Analysis, Control, and Visualization of
Data Using Personal Computers and a Graphical-Based Programming Language,” Session 2659,
Conference Proceedings of American Society of Engineering Educators (AS13E), Toledo, Ohio,
June 21-25, 1992, pp. 1447-1453.
13aroth, E. C., Clark, D. J. and Losey, R. W., “An Adaptive Structure Data Acquisition System
using a Graphical-Based Programming Language,” AIAA-92-4833-CP, Conference Proceedings of
Fourth AIAA/Air Force/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization,
Cleveland, Ohio, September 21-23, 1992, pp. 1104-1110.
13aroth, E. C., Hartsough, C., Johnsen, L., McGregor, J., Powell-Meeks, M., Walsh, A., Wells, G.,
Chazanoff, S., and 13runzie, T. “A Survey of Data Acquisition and Analysis Software Tools, Part 1,“
Evaluation En~in~n~ Magazine, October, 1993, pp. 54-66.
Breeman, D., “Jet Propulsion Lab Aids in Space Craft Project,” &cc_entific Comp@ing and
Automation, November, 1993, pp. 26-28.
Elulke]ey, D., “Today’s Equipment Tests Tomorrow’s Designs,” Desire News Magazine, May 17,
1993, pp. 82-86.
Puttre’, M., “Software Makes Its Home in the Lab,” Mechanical Engineering Magazine, October,
1992, pp. 75-78.
Kent, G., “Auton]ated RF Test System for Digital Cellular Telephones,” Proceedings from
NEPCON West ’93, Anaheim, California, February 7-11, 1993, pp. 1055-1064.
Henderson, J. R., “Sequential File Creation for Automated Test procedures,” Proceedings from
NEPCON West ’93, Anaheim, California, February 7-11, 1993, pp. 1065-1077.
Jordan, S. C., “Cutting Costs the Old Fashioned Way,” Proceedings from NEI’CON West ’93,
Anaheim, California, February 7-11, 1993, pp. 1921-1931.
National instruments Catalog, 1994, pp. 17-112.
Baroth, E. C., Hartsough, C., Johnsen, L., McGregor, J., Powell-Meeks, M., Walsh, A., Wells, G.,
Chazanoff, S., and Brunzie, T., “A Survey of Data Acquisition and Analysis Software Tools, Part
2,” Evaluation Enzineerin~ Ma%a_Z~n.e, November, 1993, pp. 128-140.
Small, C. H., “Diagran~ Compilers Turn Pictures into Programs,” 13DN Magazine Special Software
~u~lenwnt, June 20, 1991, pp. 13-20.
Wells, G. and Baroth, E. C., “Telenlctry Monitoring and Display using LabVIEW,” Proceedings of
National Instruments User Symposium, Austin, Texas, March 28-30, 1993.

